Characterization of a DNA repair domain containing the dihydrofolate reductase gene in Chinese hamster ovary cells.
نویسندگان
چکیده
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.
منابع مشابه
Preferential DNA repair of (6-4) photoproducts in the dihydrofolate reductase gene of Chinese hamster ovary cells.
We have developed a method to quantify (6-4) photoproducts in genes and other specific sequences within the genome. This approach utilizes the following two enzymes from Escherichia coli: ABC excinuclease, a versatile DNA repair enzyme which recognizes many types of lesions in DNA, and DNA photolyase, which reverts pyrimidine dimers. DNA is isolated from UV irradiated Chinese hamster ovary cell...
متن کاملHeterogeneity of nitrogen mustard-induced DNA damage and repair at the level of the gene in Chinese hamster ovary cells.
We here present a general method to detect alkylation damage in specific genomic regions. Cells are treated with nitrogen mustard or dimethyl sulfate; the DNA is extracted and restricted, and the parental DNA is separated. Strand breaks are created at sites of N-alkylpurines by neutral depurination followed by alkaline hydrolysis. The DNA is then separated on alkaline agarose gels and transferr...
متن کاملHuman repair gene restores normal pattern of preferential DNA repair in repair defective CHO cells.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient...
متن کاملIsolation and characterization of a variant dihydrofolate reductase cDNA from methotrexate-resistant murine L5178Y cells.
Dihydrofolate reductase (DHFR) cDNA sequences were isolated from a methotrexate-resistant mouse L5178Y cell line previously shown to contain methotrexate-resistant dihydrofolate reductase enzyme activity. Specifically-primed reverse transcription products were amplified using the polymerase chain reaction and then cloned into a mammalian expression plasmid. Candidate clones were identified by r...
متن کاملOngoing activity of RNA polymerase II confers preferential repair of nitrogen mustard-induced N-alkylpurines in the hamster dihydrofolate reductase gene.
Recently, it has been demonstrated that nitrogen mustard-induced N-alkylpurines are excised rapidly from actively transcribing genes, while they persist longer in noncoding regions and in the genome overall. It was suggested that transcriptional activity is implicated as a regulatory element in the efficient removal of lesions. By treating cells or not with the transcription inhibitor alpha-ama...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 35 شماره
صفحات -
تاریخ انتشار 1986